This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information: <http://www.informaworld.com/smpp/title~content=t713617200>

Preparation of Versatile Synthetic Precursors of Optically Active 5a-Carbasugars from (-)-vibo-Quercitol

Seiichiro Ogawaª; Miwako Asadaª; Yoriko Ooki^b; Midori Mori^b; Masayoshi Itoh^b; Takashi Korenaga^b a Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Japan b Department of Chemistry, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo, Japan

To cite this Article Ogawa, Seiichiro , Asada, Miwako , Ooki, Yoriko , Mori, Midori , Itoh, Masayoshi and Korenaga, Takashi(2005) 'Preparation of Versatile Synthetic Precursors of Optically Active 5a-Carba-sugars from (-)-vibo-Quercitol', Journal of Carbohydrate Chemistry, 24: 7, 677 — 683

To link to this Article: DOI: 10.1081/CAR-200064653 URL: <http://dx.doi.org/10.1081/CAR-200064653>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use:<http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Preparation of Versatile Synthetic Precursors of Optically Active 5a-Carbasugars from $(-)$ -vibo-**Quercitol**

Seiichiro Ogawa and Miwako Asada

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Japan

Yoriko Ooki, Midori Mori, Masayoshi Itoh, and Takashi Korenaga

Department of Chemistry, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo, Japan

The spiro-epoxide derived from $(-)$ -2-deoxy-scyllo-inosose was converted into the iodide 2, which was directly subjected to elimination conditions, affording the key methylene compound 4. Successive cyclohexylidenation of the tetrol obtained from 4, selective benzoylation, and conventional tosylation gave the homoallyl tosylate 11, which would be a versatile intermediate for preparation of biologically active 5a-carbahexopyranosylamines and their unsaturated congeners.

Keywords Cyclitols, Inositols, Bioconversion, Carbohydrate mimics, Carba-sugars, Carba-glycosylamines

INTRODUCTION

We have been engaged in developing effective routes to connect readily available *myo*-inositol to optically active carba-sugars^[1] of biologic interest. Practically, a number of carba-glycosylamines can be furnished^[2] by chemical

Received January 11, 2005; accepted April 6, 2005.

Address correspondence to Seiichiro Ogawa, Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: ogawa@bio.keio.ac.jp

678 S. Ogawa et al.

degradation and/or biogenesis of antibiotic validamycins. In recent years optically active carba-sugars have been totally synthesized^[3] starting from common hexopyranose derivatives, $(-)$ -shikimic acid, and so on. However, no process has been successfully employed for the production of large quantities of desired carba-sugars.

In a preceding paper,^[4] we documented transformation of $(-)$ -2-deoxyscyllo-inosose derived by bio-oxidation of $(-)$ -vibo-quercitol^[5] into a single crystalline spiroepoxide, from which $(-)$ - β -valiol^[6] and clinically important $(-)$ -valiolamine^[7] were prepared, thus establishing a link between cyclitols and chiral carba-sugars. This process might also be applicable for provision of branched-chain cyclitol derivatives and carba-sugars.

We report here ready synthesis of a key intermediate, $1L-(1,3/2,4)-5$ methylene-1,2,3,4-cyclohexanetetrol (2,3,4-tri-O-acetyl-5-deoxy-5a-carba-β-D $xylo$ -5-enopyranose acetate)^[8] (4), to provide 5a-carba-hexopyranoses as well as valienamine type unsaturated $5a$ -carba-hexopyranosylamines^[9,10] of biological importance (Sch. 1).

Scheme 1: Synthetic routes to biologically interesting 5a-carba-sugar derivatives from myo-inositol.

RESULTS AND DISCUSSION

Conversion of the spiro-epoxide^[4] into the *exo*-methylene compound 4 was attempted through an elimination reaction of the halides obtained from it (Sch. 2). Thus, treatment of the epoxide with 20% HBr-AcOH at 50° C gave the 7-bromide 1 selectively in 80% yield, which was then subjected to conventional elimination conditions^[11] with zinc powder in refluxing acetic acid. However, a major product was shown to be penta-O-acetyl- $(-)$ - β -valiol 3 (58%), resulting from substitution at C-7 with an acetate ion. Alternatively, the epoxide was treated with concd. hydroiodic acid in acetic acid at rt to give the iodide $\boldsymbol{2}$ (~100%). Interestingly, under similar elimination conditions as above, compound 2 was converted into the desired exo-methylene compound **4** preferentially in 85% yield. The structure of **4** was confirmed by its ¹H NMR spectrum, with signals due to H-4 and H-5a protons as a doublet $(J = 9.8 \text{ Hz})$

Scheme 2: Synthesis of the key intermediates 4 and 11 from the spiro-epoxide. Conditions and reagents: (a) 20% HBr-AcOH, 50°C (\rightarrow 1); HI (2 molar equiv.), AcOH, r.t. (\rightarrow 2); (b) Zn powder, AcOH, 2 hr, reflux temp; (c) NaOMe, MeOH; α , α -dimethoxycyclohexane (~10 molar equiv.), TsOH · H₂O (0.2 molar equiv.), DMF, 8 hr, rt; (d) Ac₂O, pyridine, rt; (e) benzoic acid (1.2 molar equiv.), Et₃N (1.2 molar equiv.), EDC · HCl (1.2 molar equiv.), DMAP (0.2 molar equiv.), CH₂Cl₂, 2 days, rt; (f) TsCl, DMAP, pyridine.

680 S. Ogawa et al.

and two resonated doublets of doublets $(J = 5.4, 13.2 \text{ Hz and } J = 11.7, 13.2 \text{ Hz})$ at δ 5.39, 2.82, and 2.25, respectively.

Compound 4 was O-deacetylated with methanolic sodium methoxide, and the resultant tetrol was allowed to react with 1,1-dimethoxycyclohexane (23 molar equiv.) in DMF in the presence of $TsOH \cdot H_2O$ (0.2 molar equiv.) at rt to give, after fractionation over a column of silica gel, the 1,2-, 2,3-, and 3,4-O-cyclohexylidene derivatives^{*a*} 5a, 6a, and 7a in 13%, 53%, and 17% yields, respectively. Their structures were clearly established on the basis of ¹H NMR spectral data of their respective di-O-acetyl derivatives 5b, 6b, and 7b. For example, the structure of 6b was assigned on the basis of its spectrum, which indicated signals due to H-1 and H-4 as a doublet of doublets of doublets $(J = 5.4, 9.9, 10.0 \text{ Hz})$ and a doublet ($J = 10.5$ Hz) at δ 4.86 and 5.41, respectively. Practically, the tetrol obtained by hydrolysis of compounds 5a and 7a was again subjected to cyclohexylidenation conditions to improve the yield of 6a.

Next, selective benzoylation of 6a was attempted by treatment with benzoic acid (1.2 molar equiv.) in the presence of 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (EDC \cdot HCl, 1.2 molar equiv.), Et₃N (1.2 molar equiv.), and DMAP (0.2 molar equiv) in CH₂Cl₂ for two days at -30° C to room temperature to afford, after fractionation over a silica gel column, the 1-O-, 4-O-, and 1,4 di-O-benzoyl derivatives 8, 9, and 10 in 13%, 35%, and 27% yields, respectively. On conventional tosylation, the major benzoate 9 was converted into reactive intermediate tosylate 11 (~100%), the structure of which was established by its ¹H NMR spectrum, exhibiting a signal due to H-4 as a doublet $(J = 10.6 \text{ Hz})$ at δ 5.62. This compound is equivalent to the corresponding 1-bromide that was effectively utilized^[12] as the intermediate for preparation of β -valienamine and its 4-epimer. To improve the practical yield of 9, compounds 8 and 10 were readily convertible into 6a by O-debenzoylation with MeONa in MeOH.

Reactivity of the homoallyl tosylate 11 toward common nucleophiles was first studied to assess reaction conditions to facilitate elimination and/or substitution reactions as selectively as possible (Sch. 3). Treatment of 11 with a large excess of lithium chloride (30 molar equiv.) in DMF in the presence of triethylamine was carried out at 85° C to afford the chloride 12 (62%) and the elimination product 14 (15%). The structure of the chloride 12 was assigned by the ¹H NMR signals for H-2 and H-3 at δ 3.58 and 4.25 as doublets of doublets $(J = 3, 9.5 \text{ Hz})$ and $(J = 9.5, 10.3 \text{ Hz})$, respectively. The structure of the alkadiene 14 was also assigned by the ${}^{1}\text{H}$ NMR spectrum, which contained a doublet ($J = 8.4$ Hz) and a doublet of doublets ($J = 8.4$, 11.2 Hz) at δ 4.43 and 3.93 due to H-2 and H-3 signals, respectively. Alternatively, azidolysis of 11 with 10 molar equiv. of sodium azide in DMF at 85° C produced the α -azide 13 (77%)

 a All compounds $4-14$ are designated the derivatives of 5a-carba-hexopyranose.

Scheme 3: Reactions of the tosylate 11. Conditions and reagents: (a) LiCl (30 molar equiv.), Et₃N, DMF, 85°C (11 \rightarrow 12); NaN₃ (10 molar equiv.), DMF, 85°C (11 \rightarrow 13).

along with 14 (12%). The ¹H NMR spectrum of 13 contained two resonated doublets of doublets at δ 3.86 ($J = 2.7$, 9.3 Hz) and 4.14 ($J = 9.3$, 10.4 Hz), attributable to H-2 and H-3, confirming the assigned structure. These results indicated 11 as a nice candidate for direct nucleophilic substitution at C-1. Compound 12 is considered to be equivalent to the α -anomer of 11, which would produce the β -azide by azidolysis. All reaction conditions have not been optimized yet. The alkadiene 14, obtainable mainly by treatment of 11 with DBU in toluene, offered a key intermediate^[13] for preparation of β -valienamine derivatives. Selected ¹H NMR data for key compounds are presented below.^b

Recently, the 1L-(1,2/3,4)-isomer of 5-methylene-1,2,3,4-cyclohexanetetrol was prepared^[14] from a D-mannitol derivative through a multistep sequence and demonstrated to be utilized as a versatile intermediate for preparation of 5a-carbafucopyranose. In conclusion, the optically active $1L-(1,3/2,4)$ -isomer

^bSpecific rotations and ¹H NMR data follow 4: $[\alpha]_D^{22} = +5.5^{\circ}$ (c = 1.8, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 5.39 (d, 1H, $J_{3,4}$ 9.8 Hz, H-4), 5.28 (dd, 1H, $J_{1,2} = J_{2,3}$ 9.8 Hz, H-2), 5.05 (m, 3H, H-3, $2 \times$ H-6), 4.82 (ddd, 1H, $J_{1,5a\text{(eq)}}$ 5.4 Hz, $J_{1,2}$ 9.8 Hz, $J_{1,5a\text{(ax)}}$ 11.7 Hz, $\rm H\text{-}1),$ 2.82 [dd, 1H, $J_{\rm 1,5a(eq)}$ 5.4 Hz, $J_{\rm 5agem}$ 13.2 Hz, H-5a(eq)], 2.25 (dd, 1H, $J_{\rm 1,5a(qx)}$ 11.7 Hz, $J_{5a\text{gem}}$ 13.2 Hz, H-5a(ax)], 2.12, 2.03, 2.02, 2.01 (4s, each 3H, 4 \times OAc). 6b: $[\alpha]_D^{22} = -27^\circ$ $(c = 0.52, \text{CHCl}_3)$; ¹H NMR (300 MHz, CDCl₃): δ 5.41 (d, 1H, $J_{3,4}$ 10.5 Hz, H-4), 5.08, 4.95 (2 s, each 1H, $2 \times$ H-6), 4.86 (ddd, 1H, $J_{1,5a(eq)}$ 5.4 Hz, $J_{1,2}$ 9.9 Hz, $J_{1,5a(ax)}$ 10.0 Hz, H-1), 3.76 (dd, 1H, $J_{2,3}$ 9.3 Hz, $J_{1,2}$ 9.9 Hz, H-2), 3.48 (dd, 1H, $J_{2,3}$ 9.3 Hz, $J_{3,4}$ 10.5 Hz, H-3), 2.92 [dd, 1H, $J_{1,5\text{a}(\text{eq})}$ 5.4 Hz, $J_{5\text{agem}}$ 13.9 Hz, H-5a(eq)], 2.14 [m, 1H, H-5a(ax)], 2.21, 2.11 $(2 \text{ s, each } 3H, 2 \times OAc), 1.67 \text{ (m, 10 H, } C_6H_{10}).$ 11 $[\alpha]_D^{20} = -15^\circ (c = 2.8, CHCl_3);$ ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: δ 8.12–7.26 (m, 9 H, Ph), 5.62 (d, 1H, $J_{3.4}$ 10.6 Hz, H-4), 5.11, 5.05 (2 s, each 1H, $2 \times$ H-6), 4.57 (ddd, 1H, $J_{1,5a(eq)}$ 5.4 Hz, $J_{1,2}$ 9.8 Hz, $J_{1,5a(ax)}$ 10.3 Hz, H-1), 3.74 (dd, 1H, $J_{2,3}$ 9.3 Hz, $J_{1,2}$ 9.6 Hz, H-2), 3.51 (dd, 1H, $J_{2,3}$ 9.3 Hz, $J_{3,4}$ 10.6 Hz, H-3), 3.01 [dd, 1H, $J_{1,5a(eq)}$ 5.4 Hz, J_{5agem} 14.4 Hz, H-5a(eq)], 2.51 [dd, 1H, $J_{1,5a(qx)}$ 10.3 Hz, J_{5agem} 14.4 Hz, H-5a(ax)], 2.44 (s, 3H, PhCH₃), 1.32 (m, 10 H, C₆H₁₀). 13: $\left[\alpha\right]_D^{20} = -9.6^\circ$ (c = 1.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta 8.16$ (m, 2H, Ph), 7.54 (m, 3H, Ph), 5.65 (d, 1H, $J_{3,4}$ 10.4 Hz, H-4), 5.09 (br s, 2 H, 2 \times H-6), 4.29 (m, 1H, H-1), 4.14 (dd, 1H, $J_{2,3}$ 9.3 Hz, $J_{3,4}$ 10.4 Hz, H-3), 3.86 (dd, 1H, $J_{1,2}$ 2.7 Hz, $J_{2,3}$ 9.3 Hz, H-2), 2.54 [m, 2 H, H-5a(ax), H-5a(eq)], 1.71 (m, 10 H, C₆H₁₀). **14**: $[\alpha]_D^{20} = +47^\circ$ (c = 0.13, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 8.14 (m, 2 H, Ph), 7.62–7.45 (m, 3H, Ph), 6.13 (m, 3H, H-1, H-4, H-5a), 5.25, 5.12 (2 s, each 1H, $2 \times$ H-6), 4.43 (d, 1H, $J_{2,3}$ 8.4 Hz, H-2), 3.93 (dd, 1H, $J_{2,3}$ 8.4 Hz, $J_{3,4}$ 11.2 Hz, H-3), 1.64 (m, 10 H, C_6H_{10}).

4, obtained directly from $m\gamma$ -inositol through bioconversion combined with conventional synthetic procedures, promises to be a key compound convertible to quantities of optically pure carba-sugars, allowing us readily to design and synthesize biologically active carba-sugar derivatives with ease.

ACKNOWLEDGMENTS

The authors sincerely thank Dr. Atsushi Takahashi (Hokko Chemical Industry, Co. Ltd, Atsugi, Japan) for helpful discussions and provision of $(-)$ -2-deoxyscyllo-inosose, and Ms. Miki Kanto for her assistance in preparing this manuscript.

REFERENCES

- [1] (a) Suami, T.; Ogawa, S. Chemistry of carba-sugars (pseudo-sugars) and their derivatives. Adv. Carbohydr. Chem. Biochem. 1990, 48, 21–90. (b) Ogawa, S. Design and synthesis of carba-sugars of biological interest. Trend. Glycosci. Glycotechnol. 2004, 16, 33–53.
- [2] (a) Kameda, Y.; Horii, S. The unsaturated cyclitol part of the new antibiotics, the validamycins. J. Chem. Soc., Chem. Commun. 1972, 746. (b) Kameda, Y.; Asano, N.; Yoshikawa, M.; Matsui, K.; Horii, S.; Fukase, H. N-Substituted valienamine, α -glucosidase inhibitors. J. Antibiot. 1982, 35, 1624–1626.
- [3] (a) Chapleur, Y. Carbohydrate mimics. Wiley-VCH: Weinheim, 1998. (b) Song, C.; Jiang, S.; Singh, G. Synthesis of $(-)$ -MK7607 and other carbasugars from $(-)$ shikimic acid. Synlett. 2001, 12, 1983–1985, and references therein. (c) Rassu, G.; Auzzas, L.; Pinna, L.; Zambrano, V.; Zanardi, F.; Battistini, L.; Marzocchi, L.; Acquotti, D.; Casiraghi, G. Variable strategy toward carbasugars and relatives, 4. Viable access to (4a-carbapentofuranosyl)amines, (5a-carbahexopyranosyl)amines, and amino acids thereof. J. Org. Chem. 2002, 67, 5338–5342, and references therein.
- [4] Ogawa, S.; Ohishi, Y.; Asada, M.; Tomoda, A.; Takahashi, A.; Ooki, Y.; Mori, M.; Itoh, M.; Korenaga, T. Convenient synthesis of $(+)$ -valiolamine and $(-)$ -1-epi valiolamine from $(-)$ -vibo-quercitol. Org. Biomol. Chem. 2004, 2, 884–889.
- [5] Takahashi, A.; Kanbe, K.; Tamamura, T.; Sato, K. Bioconversion of myoinositol to rare cyclic sugar alcohols. Anticancer. Res. 1999, 19, 3807.
- [6] Ogawa, S.; Shibata, Y. Synthesis of five diastereoisomers of the branched-chain deoxyinositol, DL-1-C-hydroxymethyl-1,2,3,4,5-cyclohexanepentol. Carbohydr. Res. 1986, 156, 273–281.
- [7] Horii, S.; Fukase, H.; Kameda, Y. Stereoselective conversion of valienamine and validamine into valiolamine. Carbohydr. Res. 1985, 140, 185–200.
- [8] IUPAC-IUBMB Nomenclature of carbohydrate (Recommendation 1966). Carbohydr. Res. 1997, 297, 1–92.
- [9] (a) Ogawa, S.; Mori, M.; Takeuchi, G.; Doi, F.; Watanabe, M.; Sakata, Y. Convenient synthesis and evaluation of enzyme inhibitory activity of several N-alkyl, N-phenylalkyl, and cyclic isourea derivatives of $5a\text{-carba-}\alpha\text{-DL-fucopy}$ randomlaring. Bioorg. Med. Chem. Lett. 2002, 12, 2811–2814; (b) Ogawa, S.; Fujieda, S.; Sakata, Y.; Ishizaki, M.; Hisamatsu, S.; Okazaki, K. Synthesis and glycosidase inhibitory

activity of some N-substituted 6-deoxy-5a-carba- β -DL- and L-galactopyranosylamines. Bioorg. Med. Chem. Lett. 2003, 13, 3461–3463.

- [10] (a) Matsuda, J.; Suzuki, O.; Oshima, A.; Yamamoto, Y.; Noguchi, A.; Takimoto, K.; Itoh, M.; Matsuzaki, Y.; Yasuda, Y.; Ogawa, S.; Sakata, Y.; Nanba, E.; Higaki, K.; Ogawa, Y.; Tominaga, L.; Ohno, K.; Iwasaki, H.; Watanabe, H.; Brady, R.O.; Suzuki, Y. Chemical chaperone therapy for brain patholoy G_{M1} gangliosidosis. Proc. Nat. Acad. Sci. USA. 2003, 100, 15912–15917. (b) Lin, H.; Sugimoto, Y.; Ohsaki, Y.; Ninomiya, H.; Oka, A.; Taniguchi, M.; Ida, H.; Eto, Y.; Ogawa, S.; Matsuzaki, Y.; Sawa, M.; Inoue, T.; Higaki, K.; Nanba, E.; Ohno, K.; Suzuki, Y. N -Octyl- β -valienamine up-regulates activity of F2131 mutant β -glucosidase in cultured cells: a potential chemical chaperone therapy for Gaucher disease. Biochim. Biophys. Acta. 2004, 1689, 219–228.
- [11] (a) Angyal, S.J.; Klavins, J.E.; Mills, A. Cyclitols, XXXV. Tridentate complexing of some C-methyl- and C-hydroxymethyl-cyclitols with borate ions. Aus. J. Chem. 1974, 27, 1075–1086. (b) Suami, T.; Ogawa, S.; Ishibashi, T.; Kasahara, I. Synthesis of pseudo- β -DL-galactopyranose and pseudo- α -DL-altropyranose. Bull. Chem. Soc. Jpn. 1976, 49, 1388–1390.
- [12] (a) Ogawa, S.; Sekura, R.; Maruyama, A.; Yuasa, H.; Hashimoto, H. Pseudo sugars, 41. Synthesis and glycosidase inhibitory activity of $5a\text{-}carba\text{-}c\text{-}D\text{-}fucopyranosyl$ amine and -galactopyranosylamine. Eur. J. Org. Chem. 2000, 2089–2093. (b) Ogawa, S.; Sekura, R.; Maruyama, A.; Odagiri, T.; Yuasa, H.; Hashimoto, H. Synthesis and evaluation of α -fucosidase inhibitory activity of 5a-carba- α -Lfucopyranose and α -DL-fucopyranosylamine. Carbohydr. Lett. **2000**, 4, 13–20.
- [13] Ogawa, S.; Sakata, Y.; Ito, N.; Watanabe, M.; Kabayama, K.; Itoh, M.; Korenaga, T. Convenient synthesis and evaluation of glycosidase inhibitory activity of α - and β -galactose-type valienamine, and some N-alkyl derivatives. Bioorg. Med. Chem. 2004, 12, 995–1002.
- [14] Carpintero, M.; Jaramillo, C.; Fernandez-Mayoralas, A. Stereoselective synthesis of carba- and C-glycosyl analogs of fucopyranosides. Eur. J. Org. Chem. 2000, 1285–1296, and references therein.